
Hadoop:
Code Injection
Distributed Fault Injection

Konstantin Boudnik
Hadoop committer, Pig contributor
cos@apache.org

Few assumptions

 The following work has been done with use of AOP injection technology called

AspectJ

 Similar results could be achieved with

 direct code implementation

 MOP (monkey-patching)

 Direct byte-code manipulations

 Offered approaches aren't limited by the scope of Hadoop platform ;)

 The scope of the talk isn't about AspectJ nor AOP/MOP technology

2

Code Injection

3

 Some APIs as extremely useful as dangerous if made public

 stop/blacklist a node or daemon

 change a node configuration

 certain functionality is experimental and needn't to be in production

 a component's source code is unavailable

 a build's re-spin isn't practical

 many changes of the same nature need to be applied

 your application doesn't have enough bugs yet

4

What for?

 producing a build for developer's testing

 simulate faults and test error recovery before deployment

 to sneak-in to the production something your boss don't

need to know

5

Use cases

6

Injecting away
 pointcut execGetBlockFile() :
 // the following will inject faults inside of the method in question
 execution (* FSDataset.getBlockFile(..)) && !within(FSDatasetAspects +);

 // This aspect specifies the logic of our fault point.
 // In this case it simply throws DiskErrorException before invoking
 // the method, specified by callGetBlockFile() pointcut
 before() throws DiskErrorException : execGetBlockFile() {
 if (ProbabilityModel.injectCriteria(FSDataset.class.getSimpleName())) {
 LOG.info("Before the injection point");
 Thread.dumpStack();
 throw new DiskErrorException("FI: injected fault point at "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 }
 }

7

Injecting away (intercept & mock)

 pointcut callCreateUri() : call (URI FileDataServlet.createUri(
 String, HdfsFileStatus, UserGroupInformation, ClientProtocol,
 HttpServletRequest, String));

 /** Replace host name with "localhost" for unit test environment. */
 URI around () throws URISyntaxException : callCreateUri() {
 final URI original = proceed();
 LOG.info("FI: original uri = " + original);
 final URI replaced = new URI(original.getScheme(),
 original.getUserInfo(),
 "localhost", original.getPort(), original.getPath(),
 original.getQuery(),

 original.getFragment()) ;
 LOG.info("FI: replaced uri = " + replaced);
 return replaced;
 }

Distributed Fault Injection

8

Why Fault Injection

 Hadoop deals with many kinds of faults

 Block corruption

 Failures of disk, Datanode, Namenode, Clients, Jobtracker, Tasktrackers and Tasks

 Varying rates of bandwidth and latency

 These are hard to test

 Unit tests mostly deal with specific single faults or patterns

 Faults do not occur frequently and hard to reproduce

 Need to inject fault in the real system (as opposed to a simulated system)

 More info

 http://wiki.apache.org/hadoop/HowToUseInjectionFramework

9

Usage models

 An actor configures a Hadoop cluster and “dials-in” a desired faults then runs a

set of applications on the cluster.

 Test the behavior of particular feature under faults

 Test time and consistency of recovery at high rate of faults

 Observe loss of data under certain pattern and frequency of faults

 Observe performance/utilization

 Note: can inject faults in the real system's (as opposed to a simulated system)

running jobs

 An actor write/reuse a unit/function test using the fault inject framework to

introduce faults during the test

 Recovery procedures testing (!)

10

Fault examples (Hdfs)

 Link/communication failure and communication corruption

 Namenode to Datanode communication

 Client to Datanode communications

 Client to Namenode communications

 Namenode related failures

 General slow downs

 Edit logs slow downs

 NFS-mounted volume is slow or not responding

 Datanode related failures

 Hardware corruption and data failures

 Storage latencies and bandwidth anomalies

11

Fault examples (Mapreduce)

 Task tracker

 Lost task trackers

 Tasks

 Timeouts

 Slow downs

 Shuffle failures

 Sort/merge failures

 Local storage issues

 JobTracker failures

 Link communication failures and corruptions

12

Scalen

 Multi-hundred nodes cluster

 Heterogeneous environment

 OS. switches, secure/non-secure configurations

 Multi-node faults scenarios (e.g. pipelines recovery)

 Requires fault manager/dispensary

 Support for multi-node, multi-conditions faults

 Fault identification, reproducibility, repeatability

 Infrastructure auto-discovery to avoid configuration complexities

13

Coming soon...

14

15

Client side

 pointcut execGetBlockFile() :
 // the following will inject faults inside of the method in question
 execution (* FSDataset.getBlockFile(..)) && !within(FSDatasetAspects +);

 before() throws DiskErrorException : execGetBlockFile() {
 ArrayList<GenericFault> pipelineFault =

FiDispenser.getFaultsFor(FSDataset.class,
FaultID.PipelineRecovery(),
RANDOM);

for (int i = 0; i < pipelineFault.size(); i++) {
 pipelineFault.get(i).execute();

 }
 }

 MachineGroup Rack1DataNodes = new MachineGroup(rack1, TYPE.DN)

 Rack1DataNodes.each {
if (it.type == RANDOM) {
 it.setTimeout(random.nextInt(2000))
 it.setType(DiskErrorException.class)
 it.setReport('logcollector.domain.com', SYSLOG)
}

 }

Fault dispenser

Q & A

16

Attic slides

17

White-box system testing: Herriot

18

Goals

 Write cluster-based tests using Java object model

 Automate many types of tests on real clusters:

 Functional

 System

 Load

 Recovery

 More information

 http://wiki.apache.org/hadoop/HowToUseSystemTestFramework

19

Main Features

 Remote daemon Observability and Controllability APIs

 Enables large cluster-based tests written in Java using JUnit

(TestNG) framework

 Herriot is comprised of a library of utility APIs, and code

injections into Hadoop binaries

 Assumes a deployed and instrumented cluster

 Production build contains NO Herriot instrumentation

 Supports fault injection

20

Major design considerations

 Common

 RPC-based utilities to control remote daemons

 Daemons belong to different roles

 Remote process management from Java: start/stop, change/push

configuration, etc.

 HDFS and MR specific APIs on top of Common

21

Common Features

 Get a daemon (a remote Hadoop process) current configuration

 Get a daemon process info: thread#, heap, environment…

 Ping a daemon (make sure it’s up and ready)

 Get/list FileStatus of a path from a remote daemon

 Deamon Log Inspection: Grep remote logs, count exceptions…

 Cluster setup/tear down; restart

 Change a daemon(s) configuration, push new configs…

22

Deployment Diagram

DN/TT host VM

Injected
code

Test host VM

Herriot
library

Test

JT host VM

Injected
code

NN host VM

Herriot
injections

23

	Slide 1
	Slide 2
	Slide 3
	Why Fault Injection
	Slide 5
	Slide 6
	Slide 7
	Fault Injection in Hadoop
	Slide 9
	Usage models
	Hdfs fault examples
	Mapreduce examples
	Slide 13
	Slide 14
	Slide 15
	Q & A
	Slide 17
	White-box system testing: Herriot
	Goals
	Main Features
	Major design considerations
	Common Features
	Deployment Diagram

