
Hadoop:
Code Injection
Distributed Fault Injection

Konstantin Boudnik
Hadoop committer, Pig contributor
cos@apache.org

Few assumptions

 The following work has been done with use of AOP injection technology called

AspectJ

 Similar results could be achieved with

 direct code implementation

 MOP (monkey-patching)

 Direct byte-code manipulations

 Offered approaches aren't limited by the scope of Hadoop platform ;)

 The scope of the talk isn't about AspectJ nor AOP/MOP technology

2

Code Injection

3

 Some APIs as extremely useful as dangerous if made public

 stop/blacklist a node or daemon

 change a node configuration

 certain functionality is experimental and needn't to be in production

 a component's source code is unavailable

 a build's re-spin isn't practical

 many changes of the same nature need to be applied

 your application doesn't have enough bugs yet

4

What for?

 producing a build for developer's testing

 simulate faults and test error recovery before deployment

 to sneak-in to the production something your boss don't

need to know

5

Use cases

6

Injecting away
 pointcut execGetBlockFile() :
 // the following will inject faults inside of the method in question
 execution (* FSDataset.getBlockFile(..)) && !within(FSDatasetAspects +);

 // This aspect specifies the logic of our fault point.
 // In this case it simply throws DiskErrorException before invoking
 // the method, specified by callGetBlockFile() pointcut
 before() throws DiskErrorException : execGetBlockFile() {
 if (ProbabilityModel.injectCriteria(FSDataset.class.getSimpleName())) {
 LOG.info("Before the injection point");
 Thread.dumpStack();
 throw new DiskErrorException("FI: injected fault point at "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 }
 }

7

Injecting away (intercept & mock)

 pointcut callCreateUri() : call (URI FileDataServlet.createUri(
 String, HdfsFileStatus, UserGroupInformation, ClientProtocol,
 HttpServletRequest, String));

 /** Replace host name with "localhost" for unit test environment. */
 URI around () throws URISyntaxException : callCreateUri() {
 final URI original = proceed();
 LOG.info("FI: original uri = " + original);
 final URI replaced = new URI(original.getScheme(),
 original.getUserInfo(),
 "localhost", original.getPort(), original.getPath(),
 original.getQuery(),

 original.getFragment()) ;
 LOG.info("FI: replaced uri = " + replaced);
 return replaced;
 }

Distributed Fault Injection

8

Why Fault Injection

 Hadoop deals with many kinds of faults

 Block corruption

 Failures of disk, Datanode, Namenode, Clients, Jobtracker, Tasktrackers and Tasks

 Varying rates of bandwidth and latency

 These are hard to test

 Unit tests mostly deal with specific single faults or patterns

 Faults do not occur frequently and hard to reproduce

 Need to inject fault in the real system (as opposed to a simulated system)

 More info

 http://wiki.apache.org/hadoop/HowToUseInjectionFramework

9

Usage models

 An actor configures a Hadoop cluster and “dials-in” a desired faults then runs a

set of applications on the cluster.

 Test the behavior of particular feature under faults

 Test time and consistency of recovery at high rate of faults

 Observe loss of data under certain pattern and frequency of faults

 Observe performance/utilization

 Note: can inject faults in the real system's (as opposed to a simulated system)

running jobs

 An actor write/reuse a unit/function test using the fault inject framework to

introduce faults during the test

 Recovery procedures testing (!)

10

Fault examples (Hdfs)

 Link/communication failure and communication corruption

 Namenode to Datanode communication

 Client to Datanode communications

 Client to Namenode communications

 Namenode related failures

 General slow downs

 Edit logs slow downs

 NFS-mounted volume is slow or not responding

 Datanode related failures

 Hardware corruption and data failures

 Storage latencies and bandwidth anomalies

11

Fault examples (Mapreduce)

 Task tracker

 Lost task trackers

 Tasks

 Timeouts

 Slow downs

 Shuffle failures

 Sort/merge failures

 Local storage issues

 JobTracker failures

 Link communication failures and corruptions

12

Scalen

 Multi-hundred nodes cluster

 Heterogeneous environment

 OS. switches, secure/non-secure configurations

 Multi-node faults scenarios (e.g. pipelines recovery)

 Requires fault manager/dispensary

 Support for multi-node, multi-conditions faults

 Fault identification, reproducibility, repeatability

 Infrastructure auto-discovery to avoid configuration complexities

13

Coming soon...

14

15

Client side

 pointcut execGetBlockFile() :
 // the following will inject faults inside of the method in question
 execution (* FSDataset.getBlockFile(..)) && !within(FSDatasetAspects +);

 before() throws DiskErrorException : execGetBlockFile() {
 ArrayList<GenericFault> pipelineFault =

FiDispenser.getFaultsFor(FSDataset.class,
FaultID.PipelineRecovery(),
RANDOM);

for (int i = 0; i < pipelineFault.size(); i++) {
 pipelineFault.get(i).execute();

 }
 }

 MachineGroup Rack1DataNodes = new MachineGroup(rack1, TYPE.DN)

 Rack1DataNodes.each {
if (it.type == RANDOM) {
 it.setTimeout(random.nextInt(2000))
 it.setType(DiskErrorException.class)
 it.setReport('logcollector.domain.com', SYSLOG)
}

 }

Fault dispenser

Q & A

16

Attic slides

17

White-box system testing: Herriot

18

Goals

 Write cluster-based tests using Java object model

 Automate many types of tests on real clusters:

 Functional

 System

 Load

 Recovery

 More information

 http://wiki.apache.org/hadoop/HowToUseSystemTestFramework

19

Main Features

 Remote daemon Observability and Controllability APIs

 Enables large cluster-based tests written in Java using JUnit

(TestNG) framework

 Herriot is comprised of a library of utility APIs, and code

injections into Hadoop binaries

 Assumes a deployed and instrumented cluster

 Production build contains NO Herriot instrumentation

 Supports fault injection

20

Major design considerations

 Common

 RPC-based utilities to control remote daemons

 Daemons belong to different roles

 Remote process management from Java: start/stop, change/push

configuration, etc.

 HDFS and MR specific APIs on top of Common

21

Common Features

 Get a daemon (a remote Hadoop process) current configuration

 Get a daemon process info: thread#, heap, environment…

 Ping a daemon (make sure it’s up and ready)

 Get/list FileStatus of a path from a remote daemon

 Deamon Log Inspection: Grep remote logs, count exceptions…

 Cluster setup/tear down; restart

 Change a daemon(s) configuration, push new configs…

22

Deployment Diagram

DN/TT host VM

Injected
code

Test host VM

Herriot
library

Test

JT host VM

Injected
code

NN host VM

Herriot
injections

23

	Slide 1
	Slide 2
	Slide 3
	Why Fault Injection
	Slide 5
	Slide 6
	Slide 7
	Fault Injection in Hadoop
	Slide 9
	Usage models
	Hdfs fault examples
	Mapreduce examples
	Slide 13
	Slide 14
	Slide 15
	Q & A
	Slide 17
	White-box system testing: Herriot
	Goals
	Main Features
	Major design considerations
	Common Features
	Deployment Diagram

